СОГЛАСОВАНО

Зам. руководителя Испытательного

лабораторного центра

ФГУ «РНИИТО им. Р.Р. Вредена

Росмедтехнологий».

вед.н.с., к.ф.н.

А.Г. Афинотенова

de accordis 2009,

УТВЕРЖДАЮ

По поручению фирмы «Dr. SCHUMACHER GmbH», Германия Генеральный директор ЗАО «ШАГ»

С.Н. Курин

· 2009 r.

ИНСТРУКЦИЯ **Л**

но применению дезинфицирующего средства «ДЕСКОСАК» для дезинфекции и очистки отсасывающих систем в ЛПУ и других учреждениях стоматологического и ЛОР профиля производства фирмы «Dr. SCHUMACHER GmbH», Германия

ИНСТРУКЦИЯ №. ____

по применению дезинфицирующего средства «ДЕСКОСАК» для дезинфекции и очистки отсасывающих систем производства фирмы «Dr. SCHUMACHER GmbH», Германия

Инструкция разработана: ИЛЦ ФГУ «РНИИТО им. Р.Р. Вредена Росмедтехнологий». Авторы: Афиногенов Г.Е., Афиногенова А.Г. (ИЛЦ ФГУ «РНИИТО им. Р.Р. Вредена Росмедтехнологий»).

Инструкция предназначена для персонала лечебно-профилактических и других учреждений стоматологического профиля.

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Средство «ДЕСКОСАК» представляет собой концентрат в виде прозрачной бесцветной жидкости со слабым специфическим запахом. Содержит в своем составе в качестве действующего вещества четвертично-аммониевое соединение (ЧАС) диалкилдиметиламмония хлорид 6%, а также функциональные компоненты. рН средства 9,0-10.0.

Срок годности средства в упаковке производителя составляет 3 года.

Средство выпускается в полиэтиленовых флаконах с завинчивающейся крышкой вместимостью 0,25 дм¹¹, 2 дм³, в канистрах вместимостью 5 дм³.

1.2. Средство «ДЕСКОСАК» обладает антимикробным действием отношении грамположительных грамотрицательных И бактерий (включая возбудителей внутрибольничных инфекций и микобактерии туберкулеза), вирусов (включая аденовирусы, вирусы гриппа, парагриппа, «птичьего», «свиного» гриппа и другие типы вируса гриппа, возбудителей острых респираторных инфекций, энтеровирусы, ротавирусы, полиомиелита, вирусы энтеральных, парентеральных гепатитов, герпеса, атипичной пневмонии, ВИЧ-инфекции и др.), грибов рода Кандида, Трихофитон.

Средство обладает хорошими моющими свойствами при малом пенообразовании, не портит обрабатываемые объекты, не фиксирует органические загрязнения, не вызывает коррозии металлов.

Средство сохраняет свои свойства после замерзания и последующего оттаивания.

1.3. Средство «ДЕСКОСАК» по параметрам острой токсичности DLjo при введении в желудок относится к 4 классу малоопасных веществ, к 4 классу малоопасных веществ при нанесении на кожу, при ингаляционном воздействии в виде паров по степени летучести (Сзо) средство нетоксично (ГОСТ 12.1.007-76); средство относится к 5 классу практически нетоксичных веществ при введении в брюшину (по классификации К.К. Сидорова). При однократном воздействии средство оказывает слабое местно-раздражающее действие на кожу и умеренное - на слизистые оболочки глаз; средство не обладает кожно-резорбтивным и сенсибилизирующим действием.

Рабочий раствор средства 2% не оказывает раздражающего действия на кожу при однократном нанесении; при многократный аппликациях может, вызвать сухость Ложи; раствор средства обладает слабым раздражающим действием на слизистые оболочки глаз ПДК в воздухе рабочей зоны: ЧАС (по алкилдиметилбензиламтМр,ний ,^;юдщ^;, т Г мг/м (аэрозоль).

1.4. Средство «ДЕСКОСАК» предназначено для применения в лечебно-профилактических и других учреждениях стоматологического и ЛОР профиля для дезинфекции и очистки отсасывающих систем.

2. ПРИГОТОВЛЕНИЕ РАБОЧИХ РАСТВОРОВ

2.1. Согласно рекомендациям фирмы-производителя средство применяется в виде 2% рабочего раствора.

Рабочий раствор средства готовят в емкости из любого материала, путем смешивания средства с водой. Растворить 20 мл концентрата средства в 1 л горячей воды (минимум 40-60°C). Рабочий раствор средства используется сразу же после приготовления.

3. ПРИМЕНЕНИЕ СРЕДСТВА «ДЕСКОСАК» ДЛЯ ДЕЗИНФЕКЦИИ И ОЧИСТКИ ОТСАСЫВАЮЩИХ СИСТЕМ

3.1. Отсасывающие системы дезинфицируют, пропуская 2% рабочий раствор средства сразу же после его приготовления через отсасывающую систему установки в течение 2 мин (не менее 1 л), после чего оставляют 2% раствор на 15 мин в системе (в это время отсасывающую систему не используют). По окончании дезинфекционной выдержки раствор из системы сливают и промывают ее проточной питьевой водой в течение 2-х минут. Рекомендуется для оптимальной защиты материалов системы проводить дезинфекцию перед началом рабочего дня и не оставлять рабочий раствор в системе на ночь.

При необходимости дезинфекцию и очистку системы проводят 3 раза в день.

3.2. Наконечники к отсасывающим системам (слюноотсосы) обеззараживают после применения у пациента способом погружения в 2% рабочий раствор средства на 15 мин. После окончания дезинфекционной выдержки наконечники промывают проточной водой в течение 5 мин.

Плевательницы дезинфицируют, заливая их 2% раствором средства на 15 мин, затем их споласкивают проточной водой не менее 3 минут.

4. МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 4.1. Не допускать к работе лиц с повышенной чувствительностью к химическим средствам и аллергическими заболеваниями.
- 4.2. Избегать попадания концентрата в глаза и на кожу.
- 4.3. Все работы со средством следует проводить с защитой кожи рук перчатками и защитой органов дыхания и глаз.
- 4.4. Емкости с растворами средства, предназначенные для обработки объектов способом погружения, должны быть закрыты.
- 4.5. При случайной утечке средства его следует адсорбировать удерживающим жидкость веществом (песок, опилки), собрать и направить на утилизацию, или разбавить разлившееся средство большим количеством воды.
- 4.6. При уборке пролившегося средства персоналу следует использовать индивидуальную спецодежду, сапоги, перчатки резиновые или из полиэтилена, защитные очки, маски.
- 4.7. Не допускать попадания неразбавленного средства в сточные, поверхностаые лили подземные воды и в канализацию!

5. МЕРЫ ПЕРВОЙ ПОМОЩИ ПРИ СЛУЧАЙНОМ ОТРАВЛЕНИИ

- 5.1. При попадании средства на кожу смыть его водой.
- 5.2. При попадании средства в глаза следует немедленно! промыть их под струей воды в течение 10-15 минут, при появлении гиперемии закапать 30% раствор сульфацила натрия. При необходимости обратиться к окулисту.
- 5.3. При попадании средства в желудок следует выпить несколько стаканов воды с 10-20 измельченными таблетками активированного угля. Рвоту не вызывать! При необходимости обратиться к врачу.
- 5.4. При раздражении органов дыхания (першение в горле, носу, кашель, затрудненное дыхание, удушье, слезотечение) пострадавшего удаляют из рабочего помещения на свежий воздух или в хорошо проветриваемое помещение. Рот и носоглотку прополаскивают водой. Дают теплое питье (молоко или воду). При необходимости обратиться к врачу.

6. УСЛОВИЯ ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УПАКОВКИ

- 6.1. Хранить средство при температуре от плюс 5° до плюс 40°C. Средство следует хранить отдельно от лекарственных препаратов, пищевых продуктов, в местах, недоступных детям, в сухих прохладных, хорошо проветриваемых помещениях.
- 9.2. Средство можно транспортировать любым видом транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта и гарантирующими сохранность средства и тары.
- 9.3. Средство выпускается в полиэтиленовых флаконах с завинчивающейся крышкой вместимостью 0,25 дм³; 2 дм¹¹, в канистрах вместимостью 5 дм³.

7. ФИЗИКО-ХИМИЧЕСКИЕ И АНАЛИТИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА

7.1. Контролируемые показатели и нормы

Средство контролируют по следующим показателям качества: внешний вид, цвет и запах; показатель активности водородных ионов (pH); плотность средства, массовая доля диактилдиметиламмония хлорида.

В приводимой ниже таблице 1 представлены контролируемые показатели и нормы по каждому из них.

Методы анализа предоставлены фирмой-производителем.

Таблица 1. Показатели качества и нормы для средства «ДЕСКОСАК»

№ п/п	Наименование показателя	Норма
7.2.	Внешний вид, цвет и запах	Прозрачная бесцветная жидкость со слабым специфическим запахом
7.3.	Показатель активности водородных ионов (рН)	9,0 - 10,0
7.4.	Плотность средства при 20°С, г/см ³	0,970 - 0,990
7.5.	Массовая доля диалкилдиметиламмония хлорида, %	6,0±0,5

7.2. Определение внешнего вида, цвета и запаха

Внешний вид и цвет средства определяют визуально. Для этого в прроярку из бесцветного стекла с внутренним диаметром 30-32 мм наливают средство до польвин и ошезаррившот стекла с внутренним диаметром 30-32 мм наливают средство до польвин и ошезаррившот стекла с внутренним диаметром 30-32 мм наливают средство до польвин и определяющим польвинами и определяющим польвительного и определяю

в проходящем свете.

Запах оценивают органолептически.

7.3. Определение показателя активности водородных ионов (рН)

Показатель активности водородных ионов (pH) средства измеряют потенциометрически в соответствии с ГОСТ Р 50550-93 «Товары бытовой химии. Метод определения показателя активности водородных ионов».

7.4. Определение плотности при 20° С

Определение плотности при 20°C проводят по ГОСТ 18995.1. «Продукты химические жидкие. Методы определения плотности».

7.5. Определение массовой доли диалкилдиметиламмония хлорида

7.5.1. Оборудование и реактивы:

Весы лабораторные общего назначения 2 класса точности по ГОСТ 24104-88 с наибольшим пределом взвешивания 200 г.

Бюретка 1-1-2-25-0,1 по ГОСТ 29251-91.

Цилиндр мерный 2-100-2 с притёртой пробкой по ГОСТ 1770-74 или колба

Кн-1-250-29/32 с притёртой пробкой по ГОСТ 25336-82

Кислота серная ч.д.а. или х.ч. по ГОСТ 4204-77

Натрий сернокислый безводный х.ч. или ч.д.а. по ГОСТ 4166-76

Натрий углекислый х.ч. или ч.д.а. по ГОСТ 83-79

Хлороформ по ГОСТ 20015-88.

Додецилсульфат натрия по ТУ 6-09-64-75 или реактив более высокой квалификации по действующей нормативной документации; 0,004 н. водный раствор.

Метиленовый голубой по ТУ 6-09-5569-93; водный раствор с массовой долей 0,1%-

Цетилпиридиний хлорид 1-водный с содержанием основного вещества не менее 99% производства фирмы «Мерк» (Германия) или реактив аналогичной квалификации по действующей нормативной документации; 0,004 н. водный раствор.

Вода дистиллированная по ГОСТ 6709-72.

7.5.2. Приготовление буферного раствора с рН 11

Буферный раствор готовят растворением 3.5 г углекислого натрия и 50 г натрия сернокислого в дистиллированной воде в мерной колбе вместимостью 500 мл с доведением водой до метки. Готовый раствор перемешивают. Раствор может храниться в течение 1 месяца.

- 7.5.3. Приготовление стандартного раствора цетилпиридиний хлорида и раствора додецилсульфата натрия
- а) Стандартный 0,004 н. раствор цетилпиридиний хлорида готовят растворением навески 0,143 г цетилпиридиний хлорида 3-водного в дистиллированной воде в мерной колбе вместимостью $100~{\rm cm}^3$ с доведением объема водой до метки,
- б) 0,004 н. раствор додецилсульфата натрия готовят растворением 0,116 г додецилсульфата натрия в дистиллированной воде в мерной колбе вместимостью 100 см^3 с доведением объема водой до метки.
- 7.5.4. Определение поправочного коэффициента 0,004 н. раствора додецилсульфата натрия. Поправочный коэффициент приготовленного раствора додецилсульфата натрия определяют двухфазным титрованием его 0,004 н. раствором цетилпиридиний хлорида. Для этого к 10 см³ раствора додецилсульфата натрия прибавляют 40 см³ дистиллированной воды, 0,5 см³ раствора метиленового голубого, 0,15 см³ концентрированной серной кислоты и 15 см³ хлороформа. Образовавшуюся двухфазную систему титруют раствором цетилири диний хлорида при интенсивном встряхивании колбы с закрытой пробкда До обесцвечивания нижнего хлороформенного слоя.

Титрование проводят при дневном свете. Цвет двухфазной Сисимы определяют проходящем свете.

Поправочный коэффициент (К) вычисляют по формуле:

$$K = \frac{V}{V_i}$$

где, V – объем раствора цетилпиридиний хлорида, израсходованный на титрование, см³

V₁ – объем титруемого раствора додецилсульфата натрия, равный 10 см³

7.5.5. Проведение анализа

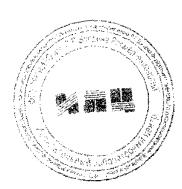
Навеску средства от 1,3 до 1,7 г, взятую с точностью до 0,0002 г, растворяют в мерной колбе вместимостью 100 см³ с доведением объема дистиллированной водой до метки. В мерный цилиндр с притертой пробкой вместимостью 100 мл (или коническую колбу вместимостью 250 см³) вносят 5 см³ раствора средства, прибавляют 30 см³ буферного раствора, 0,5 см³ раствора метиленового голубого и 15 см³ хлороформа. После взбалтывания получается двухфазная система с нижним хлороформным слоем, окрашенным в розовый цвет. Полученную двухфазную систему титруют раствором додецилсульфата натрия при интенсивном встряхивании, добавляя каждую последующую порцию титранта после разделения смеси на 2 фазы. Титруют до перехода окраски нижнего хлороформного слоя из розовой в синюю.

7.5.6. Обработка результатов

Массовую долю диалкилдиметиламмония хлорида (X) в процентах вычисляют по формуле:

$$X = \frac{0.00141 \times V_1 \times K \times 100 \times 100}{m \times V};$$

где 0,00141 - масса диалкилдиметиламмония хлорида, соответствующая 1 CM^3 раствора додецилсульфата натрия концентрации точно $C \text{ (C^AbsSC^Na)} = 0,004 \text{ моль/дм}^3 (0,004 \text{ н.)}, \text{ г;}$ V - объем раствора додецилсульфата натрия концентрации $C \text{ (C^AbsSO^Na)} = 0,004 \text{ моль/дм}^3 (0,004 \text{ н.)}, израсходованный на титрование, см}^3;$


К - поправочный коэффициент раствора додецилсульфата натрия концентрации С $(C_1, H_2, 5SO_4Na) - 0,004$ моль/дм³ (0,004 H.);

100 - коэффициент разведения анализируемой пробы:

V. объем раствора средства, взялый на титрование, равный 5см³;

т - масса анализируемой пробы, г;

За результат анализа принимают среднее арифметическое 3-х определений, абсолютное расхождение между которыми не должно превышать допускаемое расхождение, равное 0.1%. Допускаемая относительная суммарная погрешность результата анализа $\pm 3.0\%$ при доверительной вероятности 0.95.

